PA-MBE Grown CdMgO:Eu Ternary Alloy on m- and c-Oriented Al₂O₃ Substrates

J. K. Jadoon¹, A. Adhikari¹, A. Lysak¹, A. Wierzbicka¹, W. Lisowski², M. Stachowicz¹, A. Kozanecki¹, and E. Przezdziecka¹

¹ Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46,02-668 Warsaw, Poland ² Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland

Oxides based on cadmium (Cd) and magnesium (Mg) due to their properties can find an extensive range of potential applications in photovoltaics, light-emitting diodes, and other optoelectronic devices. In this work, a series of CdMgO:Eu ternary alloys were grown on mand *c*-oriented Al₂O₃ with varying Mg concentrations using plasma-assisted molecular beam epitaxy. The crystal structure and topographical features of grown ternary alloys were analyzed using X-ray diffraction and atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) was used to determine the chemical state and composition of Eu and it confirmed Eu³ europium oxidation states. The optical properties of as-grown and annealed samples were examined with UV-visible spectrometry, PL, and CL measurements. Transmission spectra revealed that the alloys are highly transparent in the visible region, where transmittance increases with incident wavelength (λ) and over 500 nm approaches nearly 90% for all samples Fig. 1. (a-b). Utilizing diffuse reflectance spectra, the dielectric constants, refractive index, and extension coefficient were also evaluated. The band gap energy (Eg) was estimated using the standard Tauc plot and the Kubellka-Munk model. The increasing trend was observed in (Eg) under Mg-rich conditions. From transmittance spectra, the highest energy gap values for *m*- and c-oriented alloys are estimated to be 2.866 eV and 3.011 eV, which are due to the high Mg concentration as consistent with literature [1]. CL confirmed the presence of Eu-related peaks in the red spectral range for annealed samples. The surface topography of CdMgO:Eu alloys are homogeneous and uniform; rms values are at the level below 1 nm and increase with Mg concentration.

Fig. 1. (a-b) Transmittance vs λ for *m*- (1M-5M) and *c*-oriented (1C-5C) alloys samples, (c) Direct and indirect bandgap energy (Eg) of CdMgO:Eu alloys on *m*- and *c*-oriented Al₂O₃ from transmittance spectra.

Acknowledgement. The work is supported by the Polish NCN project DEC-2021/41/B/ST5/00216.

[1] A. Adhikari, A. Lysak, A. Wierzbicka, P. Sybilski, A. Reszka, B.S. Witkowski, & E. Przezdziecka, *Materials Science in Semiconductor Processing*. 144, 106608 (2022).