Thermoelectric properties of Pb_{1-x}Sn_xTe crystals doped with vanadium deep donors

T. Andrearczyk¹, A. Królicka¹, J. Korczak^{1,2}, M. Szot^{1,2}, R. Minikayev¹, P. Dziawa¹, E. Łusakowska¹, A. Szczerbakow¹, K. Dybko^{1,2}, T. Story^{1,2}

¹Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland ²International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland

PbTe and SnTe as well as their substitutional alloys $Pb_{1-x}Sn_xTe$ are IV-VI semiconductor materials well known for topological crystalline insulator (TCI) properties as well as for their applications in mid-infrared devices and thermoelectric generators. Optimal application of these materials requires controlling of both type and concentration of conducting carriers: from almost semi-insulating bulk materials desired in TCIs to heavily doped ($n,p=10^{19} - 10^{20}$ cm⁻³) thermoelectric elements. In Pb_{1-x}Sn_xTe the electrically active native defects (metal vacancies) determine very high background hole concentration ($p=10^{18} - 10^{19}$ cm⁻³). Controlling electrical properties requires doping with extrinsic donors (Bi, J) or acceptors (Na, Ag) and/or thermal annealing. Thermoelectric properties of Pb_{1-x}Sn_xTe can also be controlled by incorporation of 3d transition metals, like Cr, Fe or V. The solubility of these transition metals in IV-VI semiconductors is limited to heavily doping regime (typically below 0.5 at.%) but they form a special class of resonant donor centers with the mixed valence 3+/2+ charge state depending on Sn content and Fermi level position.

In this work, we examine $Pb_{1-x}Sn_xTe:V$ bulk crystals with nominal Sn content of x=0.2 and V content of 1 at.% grown by the Bridgman method under varying thermal regime and doping procedure. The crystals studied cover the composition range corresponding to the expected ingap position of $V^{2+/3+}$ donor level [1]. Electron microscopy SEM-EDX analysis of chemical composition confirmed the Sn concentration smoothly varying along an ingot from x=0.13 to x=0.3 and an indication for very small V content (below 0.5 at. %) increasing towards the end of an ingot. To examine electrical properties, we measured the electrical conductivity and the Hall effect in the temperature range T=5-300 K revealing only *p*-type metallic conductivity with carrier concentration $p \approx 7*10^{18}$ cm⁻³ and resistivity ratio $\rho(300K)/\rho(5K) \approx 10$ due to the temperature dependence of mobility. We also measured, at room temperature, the thermoelectric power α and determined the key applicational parameter - thermoelectric power factor $P_{\sigma} = \alpha^2 / \rho \approx 8 \mu W / K^2 cm$ (comparable to observed in good PbTe-based thermoelectric materials). No in-gap pinning of Fermi level by $V^{2+/3+}$ donors and semi-insulating state was experimentally found, presumably because only small part of V centers introduced into Pb_{1-x}Sn_xTe (estimated 0.1 at.%) becomes electrically active. As a result, the electrical conductivity of our $Pb_{1-x}Sn_xTe:V$ bulk crystals still remains dominated by native defects. This balance can be changed by further doping with V or reduction of vacancies concentration by annealing.

This research has been partially supported by the Foundation for Polish Science through the IRA Programme co-financed by EU within SG OP and by TechMatStrateg2/408569/5/NCBR/2019 project TERMOD of NCBR.

[1] E.P. Skipetrov et al., Semiconductors 46, 741 (2012); Low Temp. Phys. 37, 210 (2011).