Exploring structural, electronic, and magnetic properties of 2D Cr, Fe, and Zr monoborides

Isabel Arias Camacho and Nevill Gonzalez Szwacki

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02093 Warsaw, Poland

MBenes, a family of two-dimensional transition metal borides, has recently attracted significant attention [1]. Their elemental compositions, surface terminations, geometrical forms, and chemical and physical properties are unique and fascinating. These twodimensional compounds hold promising applications in various fields such as molecular sensing, Li- and Na-ion batteries, electrocatalysis, and magnetic devices. Also important are their exceptional electrical conductivity, high hydrophilicity, rich surface chemistry, and outstanding stability.

In this work [2], we present the results of density functional theory-based calculations for 2D Fe₂B₂, Cr₂B₂, and Zr₂B₂ hexagonal and orthorhombic MBenes. According to our calculations, the orthorhombic form of the 2D structures is the most energetically favorable for Fe₂B₂ and Cr₂B₂, whereas, Zr₂B₂ MBene prefers to adopt the hexagonal form. From phonon calculations, we can also deduce that the orthorhombic structure of Zr₂B₂ and the hexagonal Fe₂B₂ are also structurally stable. The magnetic properties of the two-dimensional systems were also studied and Fe₂B₂ and Cr₂B₂ are found to be ferromagnetic, whereas Zr₂B₂ is nonmagnetic. The Fe₂B₂ structure exhibits a magnetic moment of 3.73 Bohr magnetons per unit cell (see the DOS picture shown in Fig. 1) followed by Cr₂B₂, with 2.58 Bohr magnetons per unit cell. Transport computations reveal that the highest conductivity may be expected for Zr₂B₂ and the smallest for Fe₂B₂. A detailed comparison with available data in the literature will be provided.

Figure 1: Spin resolved density of states (DOS) of ferromagnetic Fe₂B₂. The upward and downward plots show the majority and minority states, respectively, and the dashed line shows the Fermi energy.

[1] B. Zhang, J. Zhou, and Z. Sun, J. Mater. Chem. A 10, 15865 (2022).

[2] I. Arias Camacho and N. Gonzalez Szwacki, Materials - Special Issue (2023).