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The class of Ruddlesden-Popper type (PEA)2PbI4 perovskites comprises two-dimen-
sional (2D) structures which are promising materials for photovoltaic and optoelectronic
applications as their optical properties are determined by excitons with a large binding
energy of about 260 meV. In 2D perovskites, a similar degree of optical spin control can
be achieved as in conventional III-V and II-VI semiconductors, whose band structure is
inverted compared to lead halide perovskites. We present our recent studies using spin-flip
Raman scattering to measure the Zeeman splitting of electrons and holes in a magnetic
field up to 10 T (see Fig. 1a)[1]. From the recorded data, the electron and hole Landé
factors (g-factors) are evaluated (see Fig. 1b), their anisotropies are measured, and the
hole sign is determined. The electron g-factor value changes from +2.11 out-of-plane to
+2.50 in-plane, while the hole g-factor ranges between −0.13 and −0.51. Spin-flips of
resident electrons and holes have been observed through their interaction with photo-
generated excitons, as well as double spin-flip processes in which a resident electron and
hole interact with the same exciton. Furthermore, we demonstrate the hyperfine hole-
nuclei interaction in 2D perovskites by means of the dynamic nuclear polarization detected
in corresponding changes of the hole Zeeman splitting (see Fig. 1c). Due to the small
g-factor of the hole, we are able to achieve an Overhauser field value of BN,h = 0.6T.
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Figure 1: (a) Spin-flip Raman spectrum in the anti-Stokes spectral range in cross polar-
izations for B = 10 T. The hole Eh, electron Ee, and their double spin-flip Ee+h lines are
highlighted by arrows. (b) Electron and hole Raman shift as function of the magnetic field
in out-of-plane geometry (B ∥ k). (c) Power density dependences of the energy splitting
∆ EN = E+ − E− (the superscript indicates the excitation polarization) for the electron
and hole shifts. Right axis gives the corresponding Overhauser field BN.
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