Momentum resolved spin splitting in Mn-doped topologically trivial CdTe and non-trivial HgTe semiconductors

Carmine Autieri¹, Cezary Śliwa², Rajibul Islam¹, Marcin M. Wysokiński¹, and Tomasz Dietl^{1,3}

¹ International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland ² Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland ³WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

We have investigated the spin-splitting along the whole Brillouin zone in topologically trivial CdTe and non-trivial HgTe semiconductors doped with magnetic Mn^{+2} impurities by means of relativistic first-principles density functional calculations. The spin splitting of the host significantly varies in the Brillouin zone due to the k-dependence of the host-impurity hybridization. Along almost whole Brillouin zone spin-splitting is strongly antiferromagnetic due to the Kondo-like exchange between the d-states and the host. The notable exception is the vicinity of the Γ point, where the spin-splitting of the conduction band becomes ferromagnetic. The nature of the host quantum state plays a crucial role in the determination of the magnetic spin split. Indeed, the Γ_6 bonding state does not couple to the d-states but it does couple ferromagnetically to Mn-4s. The electronic correlations suppress the antiferromagnetic Kondo-like coupling while do not affect the ferromagnetic direct exchange. In result, we have found a strong suppression of the spin splitting at the L point that explains the anomalous spin splitting found in available experimental works. Moreover, for HgTe we demonstrate that the topologically non-trivial state is also a Γ_6 bonding state. In this case, the spin-orbit coupling increases the magnetic spin-splitting at the Γ point.