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   Edge states discovered in many currently heavily investigated 2D materials like topological 

insulators [1] and transitions metal dichalcogenides MX2 (M=Mo, X=S,Se,Te) [2] are 

interesting new charge/spin/valley [3] degree of freedom carriers. Those states may 

potentially offer dissipationless transport in moderately disordered samples even up to room 

temperatures [4]. Interestingly, sometimes states occurring in formally trivial systems are also 

roboust against defects [5]. In the following work we study electronic properties of quasi-one-

dimensional nanostructures, exhibiting various types of edge states protected against 

backscattering. 

   In first part we analyze differences between chiral [6], helical [7] and recently proposed 

antichiral [8] low-energy effective models on a honeycomb lattice. We show how different 

kinds of edge-bulk states interplay affects transport in disordered zigzag and armchair-type 

nanoribbons and discuss differences between backscattering suppression mechanisms. In next  

step we introduce smooth electrostatic potentials defined on those nanoribbons, modelling 

quantum-dot like confinement. We investigate how details of different models and their 

topology affects spectra of localized states and how inter-dot coupling affects transport in 

single-particle regime. Finally, low-energy approximations are compared with more advanced 

tight-binding models of gapped graphene and TMDC’s representant MoS2 [9]. 
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