Theory of electronic and transport properties in nanoribbons with different types of protected edge states

W. Radosz ${ }^{1}$, M. Bieniek ${ }^{1,2}$, P. Potasz ${ }^{1}$, A. Wójs ${ }^{1}$
${ }^{1}$ Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
${ }^{2}$ Department of Physics, University of Ottawa, Ottawa, Ontario, Canada KIN 6N5

Edge states discovered in many currently heavily investigated 2D materials like topological insulators [1] and transitions metal dichalcogenides $\mathrm{MX}_{2}(\mathrm{M}=\mathrm{Mo}, \mathrm{X}=\mathrm{S}, \mathrm{Se}, \mathrm{Te})$ [2] are interesting new charge/spin/valley [3] degree of freedom carriers. Those states may potentially offer dissipationless transport in moderately disordered samples even up to room temperatures [4]. Interestingly, sometimes states occurring in formally trivial systems are also roboust against defects [5]. In the following work we study electronic properties of quasi-onedimensional nanostructures, exhibiting various types of edge states protected against backscattering.
In first part we analyze differences between chiral [6], helical [7] and recently proposed antichiral [8] low-energy effective models on a honeycomb lattice. We show how different kinds of edge-bulk states interplay affects transport in disordered zigzag and armchair-type nanoribbons and discuss differences between backscattering suppression mechanisms. In next step we introduce smooth electrostatic potentials defined on those nanoribbons, modelling quantum-dot like confinement. We investigate how details of different models and their topology affects spectra of localized states and how inter-dot coupling affects transport in single-particle regime. Finally, low-energy approximations are compared with more advanced tight-binding models of gapped graphene and TMDC's representant MoS_{2} [9].
[1] Y. Ren, Z. Qiao and Q. Niu, Rep. Prog. Phys. 79, 066501 (2016)
[2] G. Wang, A. Chernikov, M.M. Glazov, T.F. Heinz, X. Marie, T. Amand and B. Urbaszek, Rev. Mod. Phys. 90, 021001 (2018)
[3] J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao and X. Xu, Nat. Rev. Mat. 1, 16055 (2016)
[4] F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, R. Claessen, Science 357, 287 (2017)
[5] F. Khoeini, Kh. Shakouri and F. M. Peeters, Phys. Rev. B 94, 125412 (2016)
[6] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)
[7] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005)
[8] E. Colomes and M. Franz, Phys. Rev. Lett. 120, 086603 (2018)
[9] M. Bieniek, M. Korkusiński, L. Szulakowska, P. Potasz, I. Ozfidan, and P. Hawrylak, Phys. Rev. B 97, 085153 (2018)

