Strain effects on structural properties of ScN, YN, LaN, and LuN materials

Maciej J. Winiarski, Dorota Kowalska

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland

*RE*N materials (*RE* = Sc, Y, La, and Lu) exhibit the Rock Salt (RS, NaCl) ground state phase. However, the investigations based on the density functional theory (DFT) considered a stability of the hexagonal BN-like structure (hBN) in ScN [1], which differs from the wurtzite (WZ) ground state of group III nitride materials. A tendency toward flattening the WZ bilayer in Sc-bearing nitrides was further confirmed by the experimental studies of structural properties of Sc_xGa_{1-x}N alloys [2].

In this presentation, the structural properties of *REN* materials under nonhydrostatic strain are investigated with the DFT-based methods. The structural relaxations for possible phases of *RE* nitrides (RS, WZ, ZB, hBN) with various volumes of a unit cell are performed within the local density approximation. The findings presented here support previous predictions that tensile strained *REN* systems may adopt the hexagonal structures of boron nitride. Further elongation of the in-plane lattice parameters stabilize the WZ phase in *REN* materials, which is unstable under hydrostatic conditions. A strain-induced occurrence of WZ phase in *REN* systems may intentionally be employed for fabrication of high quality ternary *REN* and group III nitride alloys and some heterostructures formed from such materials.

This work was supported by the National Science Centre (Poland) under research Grant no. 2017/26/D/ST3/00447. Calculations were performed in Wroclaw Center for Networking and Supercomputing (Project nos. 158 and 175).

[1] N. Farrer, L. Bellaiche, *Phys. Rev. B* **66**, 201203(R) (2002).

[2] C. Constantin, H. Al-Brithen, M. B. Haider, D. Ingram, A. R. Smith, *Phys. Rev. B* **70**, 193309 (2004).