Structural, electrical and magnetic properties of Yb³⁺-doped cadmium molybdato-tungstate single crystal

T. Groń¹, E. Tomaszewicz², M. Berkowski³, J. Kusz¹, M. Oboz¹, B. Sawicki¹

¹University of Silesia, Institute of Physics, ul. Uniwersytecka 4, 40-007 Katowice, Poland ²West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Inorganic and Analytical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland ³Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland

Scheelite-type molybdate and tungstate crystals have the advantages of stable chemical properties, and they may be doped with a higher rare-earth ions concentration. From the spectroscopic point of view, Yb^{3+} ions exhibit several interesting features in comparison with other RE^{3+} ones. As active ions Yb^{3+} ions have only two manifolds, *i.e.* ${}^{2}F_{7/2}$ (ground state) and ${}^{2}F_{5/2}$ (excited state) which prevent laser losses owing excited-state absorption, upconversion and concentration quenching encountered for Nd^{3+} -doped laser materials. Due to strong electron-phonon coupling, Yb^{3+} ions exhibit wider electronic transition lines and 3 or 4 times longer emission life-times in comparison with Nd^{3+} ions in similar hosts. For these reasons, Yb^{3+} -doped crystals allow a broad tunability of a laser oscillation and a generation of ultrashort laser pulses.

In this work single crystal of new Cd1-3xYb2x $\Box x(MoO4)1-3x(WO4)3x$ (x = 0.0098, \Box denotes vacancy) solid solution was successfully grown by the Czochralski method. X-ray diffraction measurement at 298(1) K showed that Yb³⁺-doped single crystal adopts the tetragonal scheelite type structure with a space group $I4_1/a$. The Mo/W ions are tetrahedral coordinated and Cd/Yb – dodecahedral coordinated. The lattice parameters of the unit cell are: a = b = 5.15539(12) and c = 11.1919(3) Å and the agreement factor R = 1.59 %. Ytterbium ions do not show long-range order because we did not observe satellite reflections and they are randomly distributed in the unit cell, substituting the Cd²⁺ ones. Similar distribution of RE³⁺ was observed in other single crystals investigates by us, *i.e.* Cd_{1-3x}RE_{2x} \Box_x MoO₄ (RE = Nd, Gd, Dy, and for different x values) [1-3].

The electrical conductivity $\sigma(T)$ and the *I-V* characteristics were measured with the aid of the DC method in the temperature range of 77–400 K using a KEITHLEY 6517B Electrometer/High Resistance Meter. The thermoelectric power S(T) was measured in the temperature range of 300–600 K with the aid of a Seebeck Effect Measurement System (MMR Technologies, Inc., USA). The magnetic properties were designated in the zero-field cooled and field cooled mode using a Quantum Design Physical Properties Measurement System. The results of the electrical and magnetic measurements revealed semiconducting behaviour and ferrimagnetic long-range interactions below 2 K as well as antiferromagnetic short-range ones visible in the negative Curie–Weiss temperature ($\theta = -44$ K). The magnetization of the single crystal under study at 2, 10, 20, 40 and 60 kOe is almost the universal Brillouin function of H/T, characteristic for superparamagnetic-like behaviour. A paramagnetic-diamagnetic transition at room temperature and at 6 kOe was observed.

- [1] T. Groń, E. Tomaszewicz, M. Berkowski, H. Duda, Z. Kukuła, S. Pawlus, T. Mydlarz, T. Ostafin, J. Kusz, J. Alloy. Compd. 593 (2014) 230-234.
- [2] T. Groń, E. Tomaszewicz, M. Berkowski, B. Sawicki, P. Urbanowicz, J. Kusz, H. Duda, M. Oboz, Ceram. Int. 42 (2016) 4185–4193.
- [3] T. Groń, E. Tomaszewicz, M. Berkowski, M. Oboz, J. Kusz, H. Duda, P. Urbanowicz, Solid State Phenom. 257 (2017) 107-110.