Inversion of permanent exciton dipole moment in self-assembled In(Ga)As quantum dots using nonlinear piezotronic effect

P. Klenovský^{1,2}, J. Aberl³, J. S. Wildmann³, J. Martín Sánchez³, T. Fromherz³, E. Zallo^{4,5}, J. Humlíček^{1,2}, A. Rastelli³, R. Trotta³

¹Department of Condensed Matter Physics, Masaryk University, Kotlářská, CZ-61137 Brno, Czech Republic

²Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic

³Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenbergerstrae 69, A-4040 Linz, Austria

⁴Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrae 20, D-01069 Dresden, Germany

⁵Paul-Drude-Institut fr Festkörperelektronik, Hausvogteilplatz 5-7, 10117 Berlin, Germany

We show tuning of the electric dipole moment of excitons confined in self-assembled In(Ga)As quantum dots by anisotropic biaxial stress up to complete erasure of the dipole and inversion of its sign. A careful inspection of the current-voltage characteristics of our diode-like device reveals a systematic and sizable change of its built-in potential up to 110 mV with applied stress. We attribute this effect to piezoelectricity and present a simple model allowing us to deduce fairly precisely the magnitude of the applied stress from the shift of the current onset. Furthermore, by self-consistent k.p calculations we single out the effect of various contributions to the strain-induced changes of the dipole moment in our QDs and find a dominant influence of the nonlinear piezoelectricity, importance of which in QD-physics has been theoretically recognized but it proved to be difficult to single out experimentally.

