Transport and magnetism at ferromagnetic-paramagnetic critical point in (Ga,Mn)As

G. Mazur¹, J. Sadowski^{1,2}, T. Dietl^{1,3,4}, and M. Sawicki¹

¹Institute of Physics, Polish Academy of Sciences, Warsaw, Poland ²MAX-Lab, Lund University, Lund, Sweden ³Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Poland ⁴WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan

The critical behavior of resistivity at the paramagnetic-(anti-)ferromagnetic critical point is one of the open problems in the physics of conducting magnets. In Ga_{1-x}Mn_xAs which has become an archetypical carrier-mediated dilute ferromagnetic semiconductor, a phenomenological approach showed that the singularity in dR/dT at $T_{\rm C}$ can be consistently interpreted in terms of large wave vector scattering of hole carriers from spin fluctuations [1]. However, the recent studies of *insulating* dilute ferromagnet Ga_{1-x}Mn_xN of similar Mn composition, $x \leq 10\%$ demonstrated a highly nonstandard critical *magnetic* behavior [2]. In this work we re-examine the transport characteristics of Ga_{1-x}Mn_xAs in the vicinity of $T_{\rm C}$ and relate them to the directly measured magnetization in the same experiment. The magnetic measurements for conducting Ga_{1-x}Mn_xAs material revealed the same departure from the classical, single-value critical exponent, description of the divergence of the initial susceptibility at $T_{\rm C}$ in Ga_{1-x}Mn_xAs as observed, and explained, for Ga_{1-x}Mn_xN [2]. Its consequences onto the critical behavior of resistivity are examined experimentally and theoretically.

[1] V. Novak et al., Phys. Rev. Lett., 101, 077201 (2008).

[2] S. Stefanowicz, G. Kunert, Tian Li, H. Reuther, C. Kruse, S. Figge, W. Stefanowicz, A. Bonanni, M. Sawicki, T. Dietl, and D. Hommel, Phys. Rev. B 88, 081201(R) (2013)