Magnetic properties of singlecrystalline $Cd_xMn_vCr_zSe_4$ (0.03 $\leq y \leq$ 0.12)

I. Jendrzejewska¹, E. Maciążek¹, T. Groń², P. Zajdel², H. Duda², J. Kusz² and A. Kita¹

¹University of Silesia, Institute of Chemistry, ul. Szkolna 9, 40-006 Katowice, Poland, ²University of Silesia, Institute of Physics, ul. Uniwersytecka 4, 40-007 Katowice, Poland

CdCr₂Se₄ spinel is a ferromagnetic semiconductor with the Curie temperature $T_{\rm C} = 130$ K, Curie-Weiss temperature $\theta = 200$ K, saturation magnetization $M_{\rm S} = 5.30 \ \mu_{\rm B}/f.u.$ at 4.2 K and the effective magnetic moment $\mu_{\rm eff} 5.49 = \mu_{\rm B}/f.u.$ [1-3]. It has a structure of AB₂X₄ type with a lattice constant of 10.721-10.750 Å, in which the Se-anions form a cubic close-packed lattice, with the Cd-cations occupying the tetrahedral sites and the Cr-cations occupying the trigonal antiprismatic sites [2]. In CdCr₂Se₄ the magnetic order results from the competition of nearest neighbors positive Cr-Se-Cr interaction and more distant negative Cr-Se-Cd-Se-Cr exchange interaction [3]. Substitution of the manganese for the divalent cadmium ion showed the ferromagnetic order in polycrystalline Cd_{0.85}Mn_{0.01}Cr_{1.97}Se₄ spinel with the Curie temperature $T_{\rm C} = 135$ K, Curie-Weiss temperature $\theta = 145$ K, saturation magnetization $M_{\rm S} = 7.49 \ \mu_{\rm B}/f.u.$ at 4.2 K and the effective magnetic moment $\mu_{\rm eff} 5.76 = \mu_{\rm B}/f.u.$ [4].

Magnetization measurements were carried out using a Quantum Design System (MPMS XL). Static (dc) magnetic susceptibility was measured in the magnetic field $H_{dc} = 100$ Oe and recorded in zero-field-cooled (ZFC) mode. Dynamic (ac) magnetic susceptibility was measured at an internal oscillating magnetic field $H_{ac} = 3.9$ Oe with an internal frequency f = 300 Hz. Both dc and ac magnetic susceptibility were measured in the temperature range 5–400 K. Magnetization isotherms were measured in the temperature range 5-275 K in static (dc) magnetic fields up to 70 kOe.

Magnetic measurements showed that the Cd_xMn_yCr_zSe₄ single crystals (y = 0.03, 0.06, 0.09 and 0.12) are ferromagnets with the Curie temperature $T_{\rm C} = 130$ K, Curie-Weiss temperature $\theta = 161$ -183 K, saturation magnetization $M_{\rm S} = 3.83$ -5.45 $\mu_{\rm B}$ /f.u. at 5 K and the effective magnetic moment $\mu_{\rm eff}$ 4.62-5.30 = $\mu_{\rm B}$ /f.u., weakly dependent on the manganese substitution. The imaginary component of ac magnetic susceptibility showed strong energy loss in the long range of magnetic order, connected, for example, with the magnetic-domain-wall motion or with rotation of magnetization within domains [5]. The most interesting observation of magnetic measurements was magnetic hysteresis, which showed the existence of spontaneous magnetization and the coercive field in all crystals Cd_xMn_yCr_zSe₄, *i.e.* the typical ferromagnetic properties. Based on the experimentally set of magnetic hysteresis loops the values of spontaneous magnetization $M_{\rm S} = 0.08 \ \mu_{\rm B}$ /f.u. at 5 K and coercive field $H_{\rm C}$ 19 Oe were determined. The resulting hysteresis loops have a shape typical for affecting ferromagnetic material containing clusters of different sizes. Similar loops for Cd_{1-x}Mn_xGeAs₂ crystals were found [6].

- [1] R. Plumier, M. Lecomte, A. Miedan-Gros, and M. Sougi, Phys. Rev. Lett. 55, 239 (1975).
- [2] P.K. Baltzer, M. Robbins, and P.J. Wojtowicz, J. Appl. Phys. 38, 953 (1967).
- [3] E. Loudghiri, M. Nouges, M. Taibi, and A. Belayachi, Maroc. J. Cond. Matt. 5, 62 (2004).
- [4] I. Jendrzejewska, P. Zajdel, J. Mroziński, E. Maciążek, T. Goryczka, A. Hanc, A. Kita, Sol. State Phenom. 163, 204 (2010).
- [5] T. Sato, T. Ando, T. Watanabe, S. Itoh, Y. Endoh, and M. Furusaka, *Phys. Rev. B* 48, 6074 (1993).
- [6] R.V. Demin, L.I. Koroleva, S.F. Marenkin, S.G. Mikhailov, V.M. Novotortsev, V.T. Kalinnikov, T.G. Aminov, R. Szymczak, H. Szymczak, and M. Baran, *Tech. Phys. Lett.* 30, 81 (2004).