Magnetoresistance Measurements of Modulation Doped Si/Si_{0.8}Ge_{0.2} Structure Grown by Molecular Beam Epitaxy (MBE) Technique

S. Ağan

University fo Kırıkkale, Department of Physics, 71450 Kırıkkale, Turkey

Magnetoresistance oscillations are obtained in the inverted modulation doped molecular beam epitaxy (MBE) grown Si/Si_{0.8}Ge_{0.2} sample. The variation of the longitudinal resistivity ρ_{xx} (at B=0) and sheet conductivity σ_{xx} with temperature has been found. The 2D hole denstiy per well has been calculated from the plots of the reciprocal magnetic field (1/B). In these structures a quasi-two dimensional hole gas (2DHG) was formed in the Si_{0.8}Ge_{0.2} quantum wells with 4.2 K sheet carrier denstiy measured in the range (2.5 x 6.5) x 10¹¹ cm⁻².

Magnetotransport measurements of the longitudinal sheet resistivity ρ_{xx} and Hall resistance ρ_{xy} were made in the range B = -0.5 - 12 T and T = 0.330 - 1.5 K. At 0.3 K, Hall mobility is 4070 cm²V⁻¹s⁻¹. From SdH (Shubnikov-de Haas oscillations) low temperature magnetotransport measurements in the temperature range 332 mK - 2.5 K, the role effective mass m^{*} = (0.26 ± 0.01) m₀ was extracted for the corresponding carrier density of n_s = 3.8 x 10^{11} cm⁻².

The experimental thermopower and thermal conductivity measurements have been carried in the temperature range 1.4 - 300 K. The thermoelectric power is found to be dominated by the phonon drag contribution in the range 1.4 - 20 K. A fit to phonon drag thermopower theory for Si_{0.8}Ge_{0.2}/Si heterostructures yields a value of 4.5 eV for the acoustic phonon deformation potential. The phonon mean free paths of the structures have been calculated from the thermal conductivity measurements.