MBE Growth, Magnetic and Structural Properties of Sn_{1-x}Mn_xTe Layers

M. Zięba, B. Taliashvili, P. Dziawa, W. Knoff, W. Wołkanowicz, K. Dybko, R. Minikayev, E. Łusakowska, A. Reszka, T. Story

Institute of Physics, Polish Academy of Sciences, al.Lotników 32/46, 02-668 Warsaw, Poland

 $Sn_{1-x}Mn_x$ Te is a IV-VI diluted magnetic (semimagnetic) semiconductor exhibiting ferromagnetic, spin glass or paramagnetic properties depending on conducting hole concentration and Mn content [1]. In bulk crystals grown by the Brigdman method the thermodynamic solubility limit of Mn in rock-salt SnTe crystals is x=0.12. The corresponding ferromagnetic Curie temperature sabout 20 K for optimal hole doping [1]. In the early studies of thin $Sn_{1-x}Mn_x$ Te layers grown by molecular beam epitaxy (MBE) the single crystal rock-salt phase was observed only for quite low Mn content x≤0.04[2].Recent renewal of interest in SnTe-based semiconductor alloys is related to the discovery of topological crystalline insulator states at (001) and (111) surfaces of bulk SnTe crystals [3], with a variety of new theoretical proposals concerning ultrathin SnTe layers and SnTe-based materials with nonzero magnetization [4]. In this work, we study the growth of Sn_{1-x}Mn_xTe layers by MBE under various stoichiometry regimes known to determine carrier (hole) concentration and magnetic properties.

 $Sn_{1-x}Mn_x$ Te monocrystalline layers of the thickness of about 0.7 micron were grown by MBE on cleaved BaF₂ (111) substrate using SnTe, Mn and Te effusion cells to vary both Mn content (x=0, 0.015, 0.03, 0.05, 0.09) and crystal stoichiometry controlled by additional Te flux. The X-ray diffraction analysis of the layers (x≤0.05) revealed the expected (111) growth direction and the rock-salt crystal structure with the lattice parameter following the Vegard law. For the layer with the highest Mn content (x=0.09) additional diffraction peaks were found and assigned to inclusion of $Sn_{1-x}Mn_x$ Te with (001) crystal orientation and inclusions of antiferromagnetic MnTe. Magnetic properties of the layers were examined by electron paramagnetic resonance (EPR) studies carried out over temperature region T=3-300 K. The layers grown under close to stoichiometry regime revealed Curie-Weiss paramagnetic properties with the EPR angular dependence indicating only a weak dipolar anisotropy effects. For $Sn_{1-x}Mn_x$ Te layers grown under excess tellurium regime a ferromagnetic transition was observed at helium temperatures.

[1] P.J.T. Eggenkamp, H.J.M.Swagten, T. Story et al., Phys. Rev. B 51, 15250 (1995).

[2] A. Nadolny, J. Sadowski, B. Taliashvili et al., J. Magn.Magn. Mat. 248, 134 (2002).

[3] Y. Tanaka, Z. Ren, T. Sato at al., Nat. Phys. 8, 800 (2012).

- [4] J. Liu, T.H. Hsieh, P. Wei, et al., Nat. Mat. 13, 178 (2014).
- [5] S. Safaei, M. Galicka, P. Kacman, R. Buczko, New J. Phys. 17, 063041 (2015).