Electrical properties of Sr₂InV₃O₁₁

T. Groń¹, E. Filipek², A. Pacześna², P. Urbanowicz¹, B. Sawicki¹ and H. Duda¹

¹University of Silesia, Institute of Physics, ul. Uniwersytecka 4, 40-007 Katowice, Poland ²West Pomeranian University of Technology, Szczecin, Department of Inorganic and Analytical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland

The last few decades, intensification has been observed in the field of research on multicomponent oxide systems, which is frequently aimed at obtaining new materials of interesting electric, magnetic or catalytic properties. Investigations dealing with systems based on the oxides of divalent and trivalent metals have allowed among others to prove an existence of a series of compounds with the general formula A₂BV₃O₁₁ (where: A(II) and B(III)- metals), *e.g.* Zn₂FeV₃O₁₁, Mg₂CrV₃O₁₁, Ni₂FeV₃O₁₁ Pb₂BiV₃O₁₁, Sr₂BiV₃O₁₁. It can be concluded from bibliographic data that these compounds are likely to find an application for example as cathode materials in high-energy cells or as components of effective catalysts for the oxidation processes of light hydrocarbons.

The investigations of reactions occurring in the SrO–V₂O₅–In₂O₃ system have permitted a statement that also in this system a new compound on the formula Sr₂InV₃O₁₁ is formed [1– 3]. Hitherto performed works have shown, that a synthesis of Sr₂InV₃O₁₁ can be conducted by heating the mixture of SrCO₃ /In₂O₃/V₂O₅ (in molar ratio 4:1:3) in the atmosphere of air in the temperature range 450-800°C [1,2]. The unit cell of such obtained Sr₂InV₃O₁₁ has been found to be monoclinic with the following parameters: a = 0.9671(3) nm, b = 1.9509(8) nm, c =0.6570(2) nm, $\beta = 96.60(3)^{\circ}$, V = 1.2313 nm³. The experimental density of Sr₂InV₃O₁₁ is equal to 4.39 ± 0.05 g/cm³ [3]. The energy gap calculated from the UV-vis measurements gave $E_g = 3.5$ eV.

The electrical conductivity $\sigma(T)$ and the *I-V* characteristics have been measured with the aid of the DC method in the temperature range 300–400 K using a KEITHLEY 6517B Electrometer/High Resistance Meter. The thermoelectric power S(T) was measured in the temperature range 300–600 K with the aid of a Seebeck Effect Measurement System (MMR Technologies, Inc., USA). Broadband dielectric spectroscopy measurements were carried out using pellet, polished and sputtered with (~80 nm) Ag electrodes in the frequency range from 5×10^2 to 1×10^6 Hz with a Novocontrol Alpha Impedance Analyser and in the temperature range 76–400 K. The sample electrode surface and thickness were 5 mm² and 1.0 mm, respectively. For measuring $\varepsilon_r = C/C_0$, where C_0 is the capacity of the empty capacitor and $\tan \delta = \varepsilon'' \varepsilon'$, where ε'' and ε' are imaginary and real part of complex dielectric permittivity, respectively.

The *p*-type electrical conductivity below $\sigma = 3.4 \cdot 10^{-9}$ S/m in the temperature range 300-400 K was observed. Such small values of σ are typical for insulators and correlate well with the value of the energy gap Eg = 3.5 eV [3]. Moreover, in the temperature range 350-400 K a strong increase of σ with the activation energy $E_A = 0.79$ eV of the Arrhenius-type characteristic for semiconducting state appeared. Above 400 K only *n*-type thermoelectric power was observed.

- [2] A. Pacześna, E. Filipek, 2nd Central and Eastern European Conference on Thermal Analysis and Calorimetry, 27-30 August, 2013, Lithuania, Book of Abstracts, Vilnius, p. 306.
- [3] E. Filipek, A. Pacześna, M. Piz, Ceram. Int., (2016), in press.

^[1] E. Filipek, A. Pacześna, Polish Patent No. P404202, Warsaw, 2015.