Electrical properties of CuInVO₅

T. Groń¹, M. Bosacka², E. Filipek², A. Pacześna², P. Urbanowicz¹, B. Sawicki¹ and H. Duda¹

¹University of Silesia, Institute of Physics, ul. Uniwersytecka 4, 40-007 Katowice, Poland ²West Pomeranian University of Technology, Szczecin, Department of Inorganic and Analytical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland

CuInVO₅ has been synthesised by heating the alloy of CuInV in pure oxygen atmosphere at 650°C for 48 hours. It crystallises in monoclinic system and its elementary cell parameters are: a = 0.8793 (2) nm, b = 0.61542(6) nm c = 1.5262(2) nm, $\beta = 106.69(2)^{\circ}$, Z = 4[1]. The structure of CuInVO₅ contains isolated Cu₄O₁₈ – groups consisting of trans edge sharing CuO₆ – octahedral. Interconnection of the groups by [In₄O₁₆] – ribbons running along [010] which are built of edge- and corner-sharing InO₆ – octahedral results in the formation of slabs perpendicular to the *c*-axis. VO₄³⁻ groups link the slabs to a three-dimensional framework. The structure may be derived from a cubic closet packing of the oxygen atoms with copper and indium atoms in the octahedral and vanadium atoms in the tetrahedral vacancies. In our study the compound CuInVO₅ as a pure phase has been obtained from the mixture of oxides V₂O₅, CuO and In₂O₃ used at the molar ratio 1 : 2 : 1 and from equimolar mixture of CuO and InVO₄ [2]. From IR spectroscopic studies it shows that CuInVO₅ is built with CuO₆, InO₆ octahedra and VO₄ tetrahedra [2].

The electrical conductivity $\sigma(T)$ and the *I-V* characteristics have been measured with the aid of the DC method in the temperature range 300–400 K using a KEITHLEY 6517B Electrometer/High Resistance Meter. The thermoelectric power S(T) was measured in the temperature range 300–600 K with the aid of a Seebeck Effect Measurement System (MMR Technologies, Inc., USA). Broadband dielectric spectroscopy measurements were carried out using pellet, polished and sputtered with (~80 nm) Ag electrodes in the frequency range from 5×10^2 to 1×10^6 Hz with a Novocontrol Alpha Impedance Analyser and in the temperature range 76–400 K. The sample electrode surface and thickness were 5 mm² and 1.0 mm, respectively. For measuring $\varepsilon_r = C/C_0$, where C_0 is the capacity of the empty capacitor and $\tan \delta = \varepsilon'' \varepsilon'$, where ε'' and ε' are imaginary and real part of complex dielectric permittivity, respectively.

The electrical conductivity of the Arrhenius-type characteristic for semiconductors with the activation energy $E_A = 0.42$ eV in the temperature range 300-400 K was observed. The temperature dependence of thermopower, S(T), showed *n-p* transition at 465 K. The most interesting observation concerns the symmetric and linear characteristics *I-V* both at 300 and 400 K, showing a strong increase in electron emission and conductance by two orders of magnitude. A large carrier emission of the Arrhenius type observed in CuInVO₅ one can explain with the help of the Poole–Frenkel effect, because the electrons of copper ions on the unfilled 3*d* orbital are unscreened. For this reason, this compound can easily be polarized under the influence of an applied external electric field. The dielectric measurements showed non-linear and strong increase of the relative dielectric permittivity ε_r with increasing temperature above 200 K and its strong decrease with increasing frequency. Similar behavior has been observed for the loss tangent.

References

[1] P. Moser, V. Cirpus, W. Jung, Z. anorg. allg. Chem. 625, 714 (1999).

[2] M. Bosacka, E. Filipek, A. Pacześna, J. Therm. Anal. Cal., (2016), in press.