ZnO/GaAs heterojunction solar cells fabricated by ALD method

Piotr Caban¹, Rafał Pietruszka¹, Krzysztof Kopalko¹, Bartłomiej Witkowski¹, Marek Godlewski¹, Katarzyna Gwóźdź², Eunika Zielony², Ewa Płaczek-Popko²

¹Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland ² Wrocław University of Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

In this work we tested the possibilities of application of an AZO electrode in GaAs based photovoltaic cells. For tests solar cells of a simple architecture were prepared.

ZnO/GaAs photovoltaic cells were fabricated by ALD (Atomic Layer Deposition) method. Thin layers of zinc oxide (ZnO) and aluminium doped zinc oxide (AZO) were deposited on p-type GaAs. We examined two types of solar cells architecture, differing in deposition sequence of the ALD layers and their function. In the first architecture, AZO was deposited on a ZnO layer. AZO plays role of a TCO (Transparent Conductive Oxide) electrode. In the second one, AZO layer was grown directly on the GaAs surface as TCO layer, but also as n-type partner in a heterojunction with a p-type GaAs. ALD processes were carried out in three different temperatures: 80, 160 and 250^oC on a lightly doped p-type GaAs with three different acceptor (Zn) concentrations.

Best efficiency (Eff. = 1.39%, with a fill factor of FF=0.39) was obtained for the AZO/ZnO/GaAs cell. This efficiency can be further improved after optimization of a top metal contact (point contact was used) and of thickness of AZO and ZnO layers. Their electrical properties should also be further optimized.

Acknowledgements

The research was partially supported by the Polish National Science Centre (NCN) (DEC-2012/06/A/ST7/00398)